
Team Control Number

14087
Problem Chosen

B
2023

HiMCM
Summary Sheet

Summary

With the increase in concerns over air quality and energy consumption, electric buses
(e-buses) have emerged as a compelling solution. Given the increase in conversion from
traditional diesel buses to electric buses around the world, it is important to analyze
its environmental consequences and economic implications, and develop plans for the
transition of electric buses.

Firstly, we collected data for greenhouse gas emissions (CO2, CH4, N2O) and noise
pollution to analyze the environmental consequences of converting to an all-electric bus
fleet. Using 90% of the data as the training set and 10% of the data as the test set,
we used the logistic regression model for noise pollution; linear, improved logistic, and
exponential models were used for greenhouse gas emission. Each model has a R-square
value of 0.944, 0.884, 0.889, and 0.932, respectively. By comparing the latter 3 models
for CO2 emission, we chose to use the logistic model since it is more accurate based on
its R-square value, Root Mean Square Error, Mean Absolute Percentage Error, and its
trend is more consistent with the reality. After applying the models for noise pollution
and CO2 emission to the city of Seattle, we found that if 100% of its buses are electric
buses, then the greenhouse gas emission will decrease from 1.416×1011 grams (currently)
to 6.252× 1010 grams; for noise pollution, it will increase from 1.183 times lower to 3.308
times lower than that of a fully diesel bus fleet.

To assess the financial implications of converting to e-buses, we constructed a recursive
equation model using the number of electric buses in year t and the number of transitions
this year to determine the total number of electric buses in year t + 1. To calculate the
number of transitions, we take usable profit, external funding, operational costs of all
buses, and conversion costs of electric buses into consideration to determine the total
number of electric buses. By applying this model to Seattle, which has 1464 buses in
total (including 185 electric buses), we found that it will take around 6 years, if 50%
of the transition cost is covered by funding, to convert all of it buses to electric buses.
However, funding covering 20% of the cost will already be sufficient for Seattle to achieve
a fully electric bus fleet within 10 years.

Then, we developed a 10 year plan for converting all buses to electric buses, and ap-
plied the models to Seattle, San Francisco, and New York. We used the Entropy Weight
Method and Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) to determine which bus route should be transformed first, which takes the number
of ridership, route length, and elevation of the road into consideration. In the result,
we displayed the entropy weight of the indicators in each city, as well as the rankings
of bus routes in each city. Next, to determine the locations of the charging stations
for electric buses, we employed the K Mean Clustering Model to determine the location
that is most convenient for buses to charge. The coordinates of the charging stations are
presented in the result. Lastly, we constructed a sensitivity analysis based on our models.

Keywords: Electric bus, Regression model, Entropy Weight Method, TOPSIS
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1 Introduction
1.1 Background

Electric buses (e-buses) have been introduced since the 20th century, but due to lim-
ited technology and high costs at that time, gasoline-run vehicle was a more appealing
option. E-buses can store their electricity on board, primarily using rechargeable batter-
ies, or they can draw power from external sources such as overhead wires and ground-level
power supply systems. In recent years, improvements in factors like battery technology,
charging infrastructure, and sustainability have led to a surge in the adoption of electric
buses, especially in China. In 2017, China accounted for 99 percent of the 385,000 electric
buses worldwide, which is 17 percent of China’s total bus fleet. Other regions around the
world are also taking gradual steps to incorporate electric buses. In Western Europe, for
instance, the number of electric bus registrations had tripled in 2019, and continuously
increased in subsequent years. In 2021, the number of electric registrations increased 48%
compared to 2020.[1]

The rise in carbon dioxide (CO2) concentration in the atmosphere is the main driving
force of global warming. According to the International Energy Agency, the transport
sector contributes to nearly a quarter of global energy-related CO2 emissions [2], making
it a crucial role in mitigating the issue of climate change. One notable solution is the
substitution of diesel buses with electric buses, which can result in a substantial reduction
in CO2 emissions and energy consumption. Unlike traditional diesel buses, e-buses rely
solely on electricity for power, emitting no pollutants from their tailpipes. This reduction
in emissions also has a positive impact on air quality, which could lead to a decrease
in health-related issues. E-buses’ ability to recover energy through regenerative break
also allows them to be more energy efficient compared to diesel buses. Further, they
help reduce noise pollution and have lower operating costs when compared to their diesel
counterparts. However, there are also challenges including high purchase price, limited
range, and the need for charging infrastructure.

In this contest, we will create models to understand the environmental consequences
and economic costs associated with transitioning to an electric bus fleet. We will also
provide a 10 years plan to convert buses into fully electric bus fleet.

1.2 Problem Restatement
In this study, we aim to accomplish the following tasks.
Question 1: Construct a model that aids cities in understanding the environmental

impacts of shifting to a fully electric bus fleet. Apply the model to a metropolitan area
with a population exceeding 500,000 people that presently lacks a fully electric bus fleet.

Question 2: Construct a model that focuses on the economic implication of transi-
tioning to e-buses. It should take potential external funding that covers up to half of the
transition costs into consideration. Apply the financial model to the same area from the
previous analysis.

Question 3: Use the previously developed models (or develop new ones) to create
a 10-year roadmap that urban transport authorities can use to plan their e-bus fleet
updates. The goal is to convert buses to a full electric bus fleet by 2033. Apply your
models (or create new ones) to 3 area (including the same area used previously).

2 Assumptions
• Assumption 1: US buses, except for e-buses, are all diesel buses.

Justification: According to Statista, in 2020, 96.2% of the transit bus fleet in the
United States were diesel buses [3]. Since the other fuel types only accounted for a
very few percentage of the total fuel types, we will not take them into consideration.

• Assumption 2: Electric buses transform yearly instead of continuously.
Justification: Companies typically review their performance through annual fi-
nancial reports, and since the scale of converting to e-buses depends on information
from these yearly reports, the transformation is assumed to occur on a yearly basis.

• Assumption 3: There won’t be a sudden drop in passengers caused by uncontrol-
lable factors, such as the pandemic.
Justification: Since these types of events are unpredictable and happen on a very
low chance, we will not take them into account in this paper.
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• Assumption 4: The number of buses before and after conversion remains constant.
Justification: If there is an increase in the total number of buses, issue of storage
and land occupation may appeared. Even if there is an increase in the number of
buses, the amount will be unpredictable, therefore, we assume that the remains the
same before and after the transition to e-buses.

3 Data and Variables

Symbol Definition

B Total number of buses

EB Total number of electric buses

DB Total number of diesel buses

Emi Number of miles electric buses traveled

Dmi Number of miles diesel buses traveled

E% Percentage of electric buses

En Noise of electric buses

Dn Noise of diesel buses

dBdf Decibel difference

CO2/mi CO2 Emitted per mile

Et Total number of electric buses in t year

E0 Total number of electric buses in base year

k% Safe proportion of total profit that companies invest in the
conversion of e-buses

F% Percentage of cost covered by external funds

NT Times of noise quieter

CS Number of Charging Ports

We first collected data from 103 cities in the United States from the 2021 Revenue
Vehicle Inventory published by the Federal Transit Administration, and calculated vari-
ables including the percentage of electric bus fleet, the percentage of electric bus miles,
and the diesel bus miles in each city[4]. 93 US cities will be used as the training set, while
10 cities will be used as the test set.

Regarding greenhouse gas emissions for diesel buses, we found the emission per mile
of CO2, CH4, and N2O, which is 2680 g/mi, 0.0051 g/mi, and 0.0048 g/mi respectively
[5][6]. To find the total amount of greenhouse gas emitted by diesel buses, we multiply
the emission per mile of each gas by the total miles the bus traveled. We then add the
total emission of each gas together and get the total greenhouse emission.

Since electric buses emit zero tailpipe pollution, we take the emissions produced by
the electric supply factories into consideration. To collectively calculate the amount of
greenhouse gases emitted by electric buses, we convert the emissions of CH4 and N2O
into the equivalent amount of CO2 emission by using the Global Warming Potential
(GPW), which is the measure of the amount of greenhouse gas emission relative to CO2.
The GWP ratio for CO2: CH4: N2O is 1: 25: 298 [7].

To measure the noise pollution of buses, we found the decibels (dB) of diesel buses
and electric buses, which are around 80 dB and 63 dB respectively [8].
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4 Problem 1: Ecological Consequences Model

Figure 1: Overall Idea of Question 1

In order to understand the ecological consequences of transitioning to an all-electric
bus fleet, we constructed three main models: linear, logistic, and exponential model. We
take the percentage of transition as the independent variable and the ecological conse-
quences (including CO2, CH4, N2O, and noise pollution) as the dependent variables.
Then we compare these models and select the more accurate and reasonable one, which
will be applied to calculation of greenhouse gas emissions and noise pollution for our
chosen city. The overall idea of question 1 is shown in Figure 1.

4.1 Noise Pollution Determination
We first constructed an equation to find the difference in noise, or decibel difference

(dBdf ) between a current city with both diesel and electric buses and a hypothetical city
with all decibel buses. This allows us to determine how much quieter a city is compared
to a city will all decibel buses. The equation is shown below:

dBdf = Dn − (Dn(1− E%) + EnE%) (1)

Based on our data collected, the decibel for a diesel bus is 80 dB while the decibel for an
electric bus is 63 dB. Hence, in the equation shown above, Dn and En each corresponds
to 80 and 63, and E% denotes the percentage of electric bus in the city.

Due to a nonlinear relationship between decibels and the perceived loudness, decibels
cannot be directly transformed into the noise heard. Thus, we used the standard of
the noise difference where difference of 10 dB is 2 times the perceived loudness, and the
difference of 20 dB is 4 times the perceived loudness.

NT = 1.0198e0.0693DBF (2)

Then, we create a best-fit line using the total difference in decibels to calculate how
many times quieter the noise is when all buses in a city are diesel buses. In equation
(2), NT represents how many times the noise is quieter, and dBdf represents the decibels
difference, which is calculated through equation (1).
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4.1.1 Logistic Regression Model

Figure 2: Logistic Regression for Noise Pollution

From the collected data, we plot a scatter graph, as seen in Figure 2. We observe the
relationship between how many times quieter the noise is and the percentage of electric
buses. Considering there is an upper limit and a lower limit of the number of times noise
quieter, we choose to construct a logistic model instead of a linear regression:

NT =
2

1 + a0e−a1E%
+ 1,R2 = 0.944 (3)

where a0 and a1 are two coefficients, and NT denotes to how much times quieter the noise
is.

Based on the dB standard, 20 dB difference means 4 times the noise. Since the decibel
difference between electric bus and diesel bus is 17 dB, we can conclude that a 17 dB
difference will always be 4 times lower the noise. As shown in the graph, the upper bound
did not reach 4, which is consistent with our estimation.

4.2 CO2 Emission Determination

Figure 3: Scatterplot for CO2 Emission

The second factor of ecological consequences we consider is the amount of greenhouse
gas emitted by diesel buses. To calculate the total emission of different types of greenhouse
gases, we converted different pollutants, namely NH4 and N2O, into CO2 by using global
warming potential ratio, as mentioned in the data section, so that we can collectively
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call these three greenhouse gases emission as CO2 emission. For CO2 emission, we decide
to construct 3 models: Linear regression, Improved Logistic regression, and exponential
model. Then, we will analyze their results and apply the most accurate one to the selected
city. We calculated the percentage of electric buses and the amount of CO2 emission in
each city, and plotted the following graph. Since the majority of US cities have a small
proportion of electric bus fleet, most of the data points are clustered at the left side of
the graph.

4.2.1 Linear Regression Model (Least Square Regression)
To determine the relationship between the percentage of electric fleet and the pollution

emitted, we first created a least square regression model:

CO2/mi = 2718.957− 1423.922E%,R2 = 0.884. (4)

The total CO2 emission per mile is the dependent variable while the percentage of
electric buses is the independent variable. We draw a least square regression line based on
the formula shown above and can see that a higher percentage of electric fleet correlates
with a lower amount of carbon dioxide emission per mile.

Figure 4: Linear Regression for CO2

The reason that CO2 emission is not zero even when all of the buses are electrical is
because we also take the amount of CO2 emitted by the factory that produced electric
buses into consideration.

4.2.2 Improved Logistic Regression Model
We then create an improved logistic regression model that better fits with our data.

Since the dependent variable represents the percentage of electric buses and the inde-
pendent variable is the amount of CO2 per mile, using a regular logistic regression will
show a directly proportional relationship between x and y, which is not what we wanted.
Therefore, we improve the logistic regression model by reflecting it through the y-axis
and shifting it upward. As a result, an increase in the percentage of electric buses will
cause the CO2 emission per mile to decrease, which fits with the logic.
The improved logistic regression model is shown below:

CO2/mi =
1581

1 + 0.024e7.282E%
+ 1100,R2 = 0.889 (5)
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Figure 5: Improved Logistic Regression Model for CO2

4.2.3 Exponential Regression Model
We also use the exponential regression model to find the correlation between percent-

age of electric buses and the amount of CO2 emission per mile, as shown in the equation
below:

CO2/mi = −377.032e2.137E% + 3066.327 (6)
The reason that an exponential model might fits with our data is because by looking at
the scatter plot, it’s possible that as percentage of electric bus increase, the amount of
CO2 emitted may decrease exponentially.

Figure 6: Exponential Regression Model for CO2

4.3 CO2 Models Comparison
We first analyzed the results of the 3 regression models and see if each is valid based

logic. The table below shows the results of the three models. yL, yE, and ylinear represent
the CO2 emission per miles for improved logistic model, exponential regression model
and linear regression model, respectively. X represents the percentage of electric bus
transition. There is a notable difference between the carbon emission value of exponential
model and the other two models. As shown on the table, for exponential model, at 100
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percent electric buses, CO2 is -128.63g/mile, which is impossible to achieve in real life.
As a result, the exponential model does not seems to be a suitable model.

x yL yE ylinear

0% 2719.88 2689.30 2718.96
100% 1053.35 -128.63 1295.04

Table 1: Table to test captions and labels.

Then, we compare the root mean square error and mean absolute percentage error of
the three models. Firstly, we compare the R Square of two models to see which model
has a better performance. About 88.9 percent of the variability in CO2 emission per mile
is accounted for by the least square regression model, while about 88.4 percent of the
variability in CO2 emission per mile is accounted for by the logistic regression model.
Exponential regression model has a r square value of 0.932, which is higher than that
of the logistic model. However, we found that exponential model isn’t a suitable model
for our case since the CO2 emission per mile becomes negative when there are 100%
electric buses, which is not possible. Therefore, we selected the logistic regression model
because it has a higher R-Square value compared to the linear regression model. Also, it
is logically more reasonable than the exponential regression model.

Model Logistic Exponential Linear
R-Square 0.882 0.932 0.889
RMSE 33.478 35.781 213.061
MAPE 1.167 0.481 6.367
Table 2: Table to test captions and labels.

We also compare the root mean square error (RMSE) for the three models to better
evaluate which model is better.[9]

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

We use 10 experimental groups to calculate the mean square error. The result shows
that the logistic regression model has a mean square error of 33.478 and the Linear
regression model has a mean square error of 213.061, as shown in the table above. It’s
clear that linear regression models have a higher root mean square error, and have a
much wider spread of the data. This shows that compared to the Logistic regression
model, the Linear regression model is much more unstable and far away from the actual
experimenting group.

We then use mean absolute percentage error to compare 3 model, as shown below:

MAPE =
100

n

n∑
i

|y − ŷ

y
| (8)

As shown in the table above, logistic regression model have a MAPE of 1.167 while
linear regression model have a mean absolute percentage error of 6.367. Since lower
MAPE is inaccurate, we choose logistic regression model as our final model. Eventhough
exponential regression model have a MAPE of 0.481, which is very accurate. However,
since we found out that exponential regression model have invalid result, we eliminate it.

4.4 Application to Seattle
We then apply the logistic regression model of noise and improved logistic regression

model of CO2 into the city of Seattle. We separate the conversion of electric bus into
4 stages: 25%, 50%, 75% and 100% and observe how each stage will influence the noise
pollution and CO2 emission.
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Result Current
(12.6% EB) 25% EB 50% EB 75% EB 100% EB

CO2 Emission 1.416×1011 1.354× 1011 1.052× 1011 7.311× 1010 6.252× 1010

Noise level lower 1.183 1.369 1.834 2.465 3.308
Table 3: CO2 Emission and noise level (times lower than a full diesel bus fleet)

4.4.1 Noise Pollution
The current noise level of buses in Seattle will be around 1.18 times lower than Seattle

whose buses are all diesel buses. When there are 25 %, 50 %, 75 %, and 100 % electric
buses in Seattle, the noise level will be around 1.37 times, 1.84 times, 2.46 times, and
3.3 times lower respectively than when all buses in the city are diesel buses. This shows
that an increase in the percentage of electric buses can effectively reduce noise pollution
in Seattle. Compared to the current noise level in Seattle, which is 1.183, the all-electric
bus is 3 times quieter than the current noise level.

4.4.2 CO2 Emission
Based on our improved logistic model, the current total greenhouse gas emission by

all buses in Seattle will be 1.416 × 1011 g/yr. If 25 percent, 50 percent, 75 percent, or
100 percent of Seattle’s buses are electric, then will have an emission of 1.35367 × 1011

g/yr, 1.05232 × 1011 g/yr, 7.3108 × 1010 g/yr, and 6.25232 × 1010 g/yr respectively.

4.5 Sensitivity Analysis

Figure 7: CO2 Improved Logistic regression Sensitivity Analysis

Lastly, we analyze the sensitivity of our improved logistic model by changing a0 and
a1 by ±10%, so we get a0 = 0.024 ± 0.0024, and a1 = 7.282 ± 0.7282.

When we set Ep = 0.1, the original result is 2763.71. After changing a0 or a1 by 10%,
the result is 2772.46 or 2770.31, which only changed by 0.24%. Therefore, we consider
our model to be stable and relatively insensitive to abnormal data.

5 Problem 2: Financial Model
For problem 2, we construct a mathematical model to analyze the financial impli-

cations associated with transitioning to e-buses, specifically the recursive model. We
assume that the scale of transformation to e-buses is based on the number of electric
buses in the previous year, which is influenced by the company’s decision to allocate a
certain proportion of its profit as an investment for the conversion. Given the dynamic
nature and variability of transitioning to e-buses, a recursive model is suitable due to its
ability to continuously update and adapt to changing condition each year.
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5.1 Recursive Function Model
To determine the total number of electric buses in year t, denoted as Et below, we

add the total number of electric buses in the base year (E0) with the calculated number
of added electric buses in this year (∆Et):

Et = E0 +∆Et (9)
When a bus agency needs to convert their diesel bus to electric bus, they need to

invest money into the project every year. Hence, we calculate the number of new electric
buses that may be converted in this year by the following equation:

∆Et =
P

Cpeb

(10)

The amount of electric bus transit in one year depends on the profit the agency
generated from the buses in the previous year, which can be calculated through the general
equation Profit = Revenue− Cost. We assume that the revenue for electric buses and
diesel buses will be the same, because citizens are not likely to pay for additional ticket
prices for electric buses. However, not all of the profit earned would be used in investment
since some revenue might be used to counter risk in the future. So the usable capital
is only a proportion of the total profit generated, and the proportion that were used to
invest is denoted as k%:

∆Et =
k% ·Rtot − Ctot

Cpeb

= Et − E0 (11)

As shown in equation above, Rtot is total revenue generated from the year t0to year
(t − 1). Ctot is total running cost of all the buses, and Cpeb denotes as the cost per
additional electric bus and infrastructure such as charging port.

Since we assumed that buses are only composed of electric and diesel bus, the total
cost(Ctot) is made up of the running cost of diesel buses (CD), the running cost of electric
buses (CE), and the total cost of bus drivers’ salaries (CS):

Ctot = CD + CE + CS (12)

Each cost is calculated through the following equations:

CD = D ·Dd · Cdpm (13)

CE = E0 ·De · Cepm +∆Et ·Dd · Cepm (14)

CS = B · Cspb (15)
B is the total number of electric and diesel bus in current base year, and B = D+E0,

where D and E0 denotes the number of diesel buses, and number of electric buses in
base year, respectively. Cspb represents the average annual salary per bus driver. Dd and
De denotes the average distance, in miles, traveled by one diesel bus or one electric bus
in one year, respectively. Cdpm represents the total cost of one diesel bus for each mile
driven. This includes the cost of fuel which is diesel in this case, measured in dollar per
gallon, and the cost for maintenance, such as cleaning engine and changing the brakes,
measured in dollar per mile.

Similarly, Cepm represents the total cost of one electric bus for each mile driven, but
in this case, the fuel used is in the form of electricity. Moreover, the maintenance cost
of electric bus driven per mile would be much lower than of diesel bus. This is because
electric bus does not require changes of oil or air filter, and its mechanism of regenerative
braking that only apply the traditional friction brakes when it is slow enough, the fuel
efficiency is maximized and cost of changing brakes are reduced by half. Although there is
also a cost for changing battery for electric bus, most of electric bus agencies now provide
a 10-year warrant, so we did not take the cost of changing batteries into account.

Since E0 is a constant number, and the result of the part E0 ·De ·Cepm is the cost of
all electric buses in the base year, we add the cost of newly converted electric bus in year
t through ∆Et ·Dd · Cepm. Here, we use Dd, the average distance driven by a diesel bus,
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instead of De because the new electric buses will follow the original path of the diesel
buses, meaning there is no change in average distance traveled per bus. The recursion
also occur in this part where ∆Et is used inside itself.

For Cpeb, we take the upfront purchasing cost of one electric bus (Cb) and the cost of
one charging station (Cc) into consideration. Since an addition in one converted electric
bus does not mean addition in one new charging station, we set ρ to denote the ratio
between number of electric buses and number of charging ports. Then, we consider the
external funds being provided, which is denoted as F%. This funding varies from 0% to
50%. We multiply the cost per electric bus with the actual percentage company need to
self-invest, which is resulted from 1− F%:

Cpeb = (Cb + ρ · Cc) · (1− F%) (16)
Lastly, putting all of the above equations altogether, we construct a final model to

find the total number of electric bus t years from the base year:

Et = E0+

k%(Rtot(t− 1)−
t−1∑
i=0

(DBDdCdpm + E0DeCepm + (Ei − E0)DdCepm +B × Cspb)

(Cb + ρ · Cc)(1− F%)
(17)

where Ei − E0 is derived from ∆Et.

5.2 Parameter Determination
According to the source, the safe proportion of the profit that a company should

use to invest into the conversion project is from 20% to 25%.[10] However, since we are
applying the model to Seattle where there is only one large bus agency, King Country
Metro, which is a government agency, we take into account of its unnecessity of paying
taxes. Thus, we set k% = 0.5, adding 30% to usual safe proportion investment. From
the calculation of average number of passenger per day times ticket fee times 365, we get
Rtot = $326, 036, 250. [11]

From the previous 95 data, we found the total number of bus in Seattle in 2021 is
1467 and number of electric bus is 185. We assumed that the total number of bus will
not change as diesel bus is converting to electric us, so we set Ntot = 1467, E0 = 185, and
Dt = 1467− Et−1, so Dt = 1282.

Based on the data, we set Dd = 40386.5 miles/yr, De = 15542 miles/yr, Cspb =
$44501, Cdpm = $1.9 per mile, with the fuel costing 0.76 dollar per mile and 1.14 dollar
per mile for maintenance cost, and Cepm = 1, with the fuel of 0.36 dollar per mile and
maintenance cost of 0.64 dollar per mile.[12][13][14] The data also gives Cb = $797822
and Cc = $60000.[13] Lastly, we set ρ = 0.25 because a charging port allows four electric
buses to charge at the same time.[15]

5.3 Result Analysis

aa 50% 40% 30% 20% 10%
1 381 348 325 307 294
2 586 517 469 433 405
3 800 692 618 562 519
4 1023 874 771 695 636
5 1256 1063 929 831 756
6 1500 1259 1092 971 879
7 1462 1261 1115 1005
8 1673 1435 1263 1134
9 1615 1415 1266
10 1572 1401
11 1540

Table 4: Prediction of Seattle conversion to electric buses with different percentage fund
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We wrote this recursion model in Java, as shown in the appendix, and entered data
from Seattle in 2021. The predicted number of years needed to convert 1282 buses in
Seattle into electric buses (1464 buses in total) under different percentage of cost being
covered by funding is shown in the following table:

From Table 4, we can observe that with 50% of cost covered by external funding,
Seattle could achieve an all-electric bus city within six years. In contrast, if the external
funding percentage is only 10%, it would take a total of eleven years to convert all buses
to electric power.

Figure 8: 3D plot of Recursive function model.

6 Problem 3: E-Bus Update Plan Model
6.1 Overall Idea

To determine the plan of electric bus transition of the next 10 years, we focus on two
major factors: which bus route should transit first and where should the charging station
deploy. First, we use the Financial Model from question 2 to determine the amount of
electric buses that can be transited in 10 years. Based on the number of electric buses that
can be transited, we then calculate how many bus routes can be transited into all-electric
bus.

We then start to separate one of the priorities - which bus line should be transit first
- into 3 considerations. The first, and most important, is the ridership of the bus routes.
Bus routes with larger ridership should be transited into electric buses first. Second, we
consider the length of the bus route. Bus routes with short lengths should be transited
into electric buses first than longer bus routes. Last but not least, the elevation of the
bus route should also be considered. Bus routes with a high elevation should be transit
as the low priority. With 3 of the considerations, we are going to use an evaluation model
to rank which should be transit as the higher priority or lower priority.

For the another major priority: deployment of a charging station, we first determine
the number of charging station’s by using the ration of number of charging station to
electric buses. Bus routes with dense ridership should deploy more charging ports, and
bus routes with high elevation should also deploy more charging ports. One charging
station can hold many charging ports. We then consider the location of charging stations
base on the start points and end points of bus routes. The location of bus routes should
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be close to the start and end points of bus routes to make it convenient for buses to
charge over night. We are not considering on route charging station because it is more
expensive and complex. By using clustering model to determine where the location of
the stations are.

6.2 Route Priority Determination
In terms of deciding which routes should be transit into electric bus first, we consider

three major factors: ridership, route length, and elevation.

6.2.1 Ridership
Bus routes with higher ridership should be transited to electric buses first because bus

routes with high ridership have a slower average speed, leading to CO2 emission since they
will require more energy. This means the transition from diesel buses to electric buses
in high ridership bus route can maximize the advantages of electric buses’ efficiency at
lower velocity.

6.2.2 Route Length
As for route length, we also consider that short bus routes are usually within the dense

city center and long bus routes are usually traveling from one destination to another
without many bus stop. With such consideration, short bus routes’ average bus speed is
slower than long bus routes’ average bus speed. Since electric buses have higher efficiency
at a slow speed, and frequent stop allows bus to use regenerative braking, it’s important
to transit short bus routes first.

6.2.3 Elevation
The third factor we consider is the elevation of the bus routes. Bus routes with low

elevation should be transited into electric buses first. High-elevation bus routes should
transit afterward since there is a risk such as being out of charge or over capacity. This
can be caused by the high consumption of batteries when buses are going up a hill or
mountain. To simplify the elevation, we use 0 1 2 to shows the elevation of different
bus route. For example, elevation of 2 represent bus route that go through a hill or
mountain. Elevation of 1 represents the routes with elevation within 60 meter. Zero
represents elevation within 30 meter.

6.3 Entropy Weight Method
We use Entropy Weight Model to determine the importance of three factors in terms

of which routes should transit first. The bigger the entropy weight is, the larger the
degree of dispersion is. This means the more important the factor is.

Before standardizing the data of ridership, elevation, and route length, we first have
to determine whether the indicator is positive or negative impact.

If the indicator impact is positive, then a larger entropy value will accounts for a
larger weight, which is standardized by the following:

xij =
dij −min(di)

max(di)−min(di)
(18)

However, if the indicator impact is negative, a smaller entropy value will accounts for
a larger weight, which is standardized by the following:

xij =
max(di)− dij

max(di)−min(di)
(19)

For both equations, dij denotes the original value of ith index and jth sample, and
xij denotes the standardized value. In our case, i is the bus line, and j is one of the three
factors we are considering.

In our case, elevation and route length are negative indicators since the higher the
elevation and the longer the route length are, the lesser we take them into consideration.
Ridership is a positive indicator since the higher the amount of ridership is, the more we
take it into consideration.
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Next, we calculate the weight of each subject using the following:

pij =
xij
n∑

i=1

xij

(20)

The entropy value Ei of ith index is calculated by the following:

Ei = −

m∑
j=1

(pij · ln pij)

lnn
, (0 ≤ Ei ≤ 1) (21)

Then, we calculate the weight of each indicator through its entropy value:

dj = 1− ej (22)

wj =
dj

m∑
j=1

dj

(23)

The overall priority index of each sample is:

si =
m∑
j=1

wj × Pij (24)

6.4 TOPSIS Model
To determine the order in which each bus lines will be converted to electric buses, we

calculate a TOPSIS score for each line through the TOPSIS Model.
From the standardized values calculated in Entropy Weight Method, we can calculate

the ideal best distance (dib) and ideal worst distance (diw) for each bus line i.

diw =

√√√√ n∑
j=1

(tij − twj)2 (25)

dib =

√√√√ n∑
j=1

(tij − tbj)2 (26)

where tij is the element value, and twj and tbj are the ideal worst and ideal best, respec-
tively, for the factor j. It is also important to note that if the factor has positive impact,
the ideal best for j is the maximum value in the column j, and minimum value would
be ideal worst. If the impact of the factor is negative, ideal best would be minimum and
ideal worst would be maximum.

Then we can calculate a TOPSIS score S that indicates the solution with shortest
distance from the positive ideal solution and the largest distance from the negative ideal
solution.

S =
diw

dib + diw
(27)

The bus line with the higher score means it has a higher rank, thus we prioritize to transit
the buses on this line.

6.5 Charging Station
We first calculate the total amount of charging stations required in a city. To find

out the ratio of charging station to total electric bus, we use the data from China, city
of ShenZhen, as an template. This is because ShenZhen has a well develop electric
bus system. According to research, ShenZhen has 15896 electric bus and 81 charging
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station.[16][17] By dividing total electric bus and the charging station in ShenZheng, we
get a electric bus to charging station ratio, and we are able to determain the number of
charging station in a city.

NCS = TB ∗ 81

15896
(28)

Then by using the model from question 2, we calculate the total amount of electric
buses in a city within 10 years. By multiplying the total electric bus in a city with the
ratio, we get the amount of charging stations requires in a city.

We decided that all charging station is depot and ignore on-route charging. This is
because on-route charging is often more expensive and easy to be damaged under harsh
condition such as cold weather. Not only that, since on-route charging is along the street
routes, risk such as electrical leakage may cause greater problems.

Because we will deploy depot charging station, the location of charging station needs
to be close to either the start or end of the bus routes, allowing buses to charge over
night.

6.5.1 K Mean Clustering Model
To determine where the charging station should be deployed, we use K mean clustering

model to cluster charging station location.[18] The amount of cluster groups is equal
amount of charging station in the cites. So by using k-mean clustering model, we can get
the most convenient locations for charging station. The equation is shown below:

I =
m∑
i=1

K∑
k=1

Wik∥xi − µk∥2 (29)

Here, if xi is in cluster k, then Wik = 1; if it does not belongs to cluster k, then Wik
= 0. By using K mean cluster, we are able to determine where the charging port will be
located closest to either buses start station or end station.

6.6 Result Analysis For Route
We apply the above Entropy Model, TOPSIS Model, and K Mean Clustering Model to

Seattle, New York, and San Francisco.[19][20][21][22] The entropy weight result is shown
in Table 4.

City Ridership Route Length Elevation
Seattle 54.227% 12.272% 33.5%

San Francisco 41.216 % 14.623 % 44.1%
New York 62.115% 5.482% 32.4%

Table 5: Entropy weight for ridership, route length, and elevation in Seattle, New York,
and San Francisco

6.6.1 Seattle
By using the Entropy weight model, we calculate the entropy weight of 3 factors that

help determine which route should transit into an electric bus in Seattle as the priority. As
shown in the table above, ridership account for 54.227% of the weight, Length accounts
for 12.272%, and Elevation account for 33.5% of the weight. Since ridership accounts
for half of the entropy weight, this means ridership is very important in consideration of
which routes should change first. Elevation is also important because there are hills such
as Capital Hill and Beacon Hill.
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Bus Line Ridership(PerWeek) Elevation Distance Bus Number Rank
RapidRide D 7666 1 14.2 102 1
RapidRide A 7716 1 18 103 2

Route 40 6383 1 12.7 85 3
RapidRide B 3305 0 16 44 4
RapidRide E 10310 2 20.1 138 5
RapidRide C 5791 1 19 77 6
Route 631 34 0 7 1 7
Route 62 4503 1 15.4 59 9
Route 45 3824 1 11.8 51 10

Table 6: Scores for each factor and overall score of Seattle

After using the Entropy Weight model, we then use the TOPSIS model to determine
the priority rank for each Bus route in Seattle. The TOPSIS score for Seattle is shown
in the table above, we list out the top 10 route with the highest rank. This means, this
10 bus routes is the top 10 priority bus route that should be transit into electric bus in
Seattle.

6.6.2 San Francisco
Similar with Seattle, we also uses Entropy weight model for San Francisco’s bus route

planning. As shown in the table above, Ridership in San Francisco is accounted for
41.216% of the Entropy weight, Route length is accoutned for 14.623% of the Entropy
Weight and Elevation is accounted for 44.161% of the Entropy weight. The reason why
Elevation’s Entropy Weight in San Francisco is almost the same with Ridership is mainly
because elevation in San Francisco have a large dispersion.

Bus Line Ridership(PerWeek) Elevation Distance Bus Number Rank
49 Van Ness/Mission 25000 1 12 81 1

38 Geary 21500 1 10.5 70 2
5 Fulton 84000 1 1 27 3

12 Folsom 6300 0 9 20 4
27 Bryant 6200 0 9.2 20 5
8 Bayshore 22800 1 18 74 6

55 Dogpatch 1900 0 4 6 7
25 Treasure Island 2800 0 8 9 8

39 Coit 500 0 4 1 9
18 46th Avenue 3200 0 20 10 10

Table 7: Scores for each factor and overall score of San Francisco

The table above shows San Franscio’s TOPSIS model top 10 ranking. 10 routes
represent the top 10 proirty bus route need to be transit into electric bus.

6.6.3 New York

Bus Line Ridership(PerDay) Elevation Distance Bus Number Rank
BX12 SBS 48.124 0 7.6 103 1

BX12 48.124 0 8.1 103 2
M15 SBS 44.797 0 8.7 96 3

BX2 36.487 0 8 78 4
BX1 36.487 0 8.8 78 5

M14D 30.588 0 3.4 65 6
M14A 30.588 1 3.9 65 7

B46 SBS 43.463 1 6 93 8
B46 43.463 1 8.4 93 9

BX36 30.474 0 6 65 10
Table 8: Scores for each factor and overall score of New York
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The table shown above shows the TOPSIS result for New York cities. We use TOPSIS
model to rank the importance of each bus route and determine which bus routes should be
transit into electric bus as the priority. The table above listed the top 10 bus route that
should be transit into electric bus as the priority. This can be cause by high ridership,
low elevation, or short distance.

6.7 Result Analysis for Charging Station
6.7.1 Seattle Charging Station

By using the Electric Bus to Charging Station ratio, we calculate that Seattle requires
a total of 8 depot charging station. To see where is the best place to place the charging
stations. We first find out the coordinate of the start and end station of each bus route
in Seattle. Then by using k mean clustering model, we cluster all of the bus terminal
coordinate into 8 cluster. The 8 cluster is shown below in the table and represent the 8
most convenient charging station location for all bus in Seattle.

Seattle Latitude Longitude
Charging Station 1 47.583345 -122.331067
Charging Station 2 47.668246 -122.279981
Charging Station 3 47.672441 -122.326911
Charging Station 4 47.600383 -122.329658
Charging Station 5 47.564496 -122.324989
Charging Station 6 47.465409 -122.280121
Charging Station 7 47.624046 -122.314998
Charging Station 8 47.677001 -122.346885

Table 9: 8 Location for Charging Station in Seattle

The eight coordinate shown above represent the recommended charging station posi-
tion in Seattle.
6.7.2 San Francisco Charging Station

Through the bus charging station to bus number ratio, we calculate that San Francisco
use needs 6 charging station. Due to the limitation of length, we only present the location
of 3 charging stations that will be build in first 5 years. One notable result error is the
charging station 2. The Charging station 2 is outside of San Francisco because it is
accounting the special bus route 25 Treasure Island. Because the Charging Station 2 is
only accounting 25 Treasure Island, We plan to directly build the station on the island.

San Francisco Latitude Longitude
Charging Station 1 37.712367 -122.136049
Charging Station 2 47.668246 -122.279981
Charging Station 3 37.750362 -122.48414

Table 10: 3 Location for Charging Station in San Francisco

6.7.3 New York City Charging Station
New York City has the largest size and the most number of bus; thus it has the most

complicated public transport system needs to be convert. To avoid pages of different
color pictures and data, we present the location of charging station in New York for the
first two year. Overall, there are 31 charging station in New York after 10 years. In the
First two year, there will be 6 charging station built. The following locations are where
the charging station is.

Some errors with the location of the Charging Station is that the locations of Charging
Station 1 and Charging Station 4 are located on the sea. To fix this error, we move the
location onto the Shore to make the Charging Station plausible.
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New York City Latitude Longitude(W)
Charging Station 1 40.429995 73.583237
Charging Station 2 40.873 73.90875
Charging Station 3 40.621 73.9351
Charging Station 4 40.49395 73.552675
Charging Station 5 40.835936 73.838569
Charging Station 6 40.828 73.9285

Table 11: 6 Location for Charging Station in New York

6.8 Overall planning of three cities
The following maps of three cities represent the location of the routes that needs to

be change and the locations of the charging stations.

Figure 9: Seattle, San Francisco, New York E-Bus Transition Plan

The color of the routes represent the different times when the route is converted to
electric bus. The dark red is the route converted in first year. Red represents second
year, and orange represents the third year. Yellow represents fourth year. Finally green
represents the fifth year. Pink points represent the location of charging station. For
Seattle and San Francisco, we presents the first five year plan while we only present the
first two year plan for New York City due to its large number of buses. A complete plan
will be attach to Appendix.
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7 Strengths and Weaknesses
7.1 Strengths

• For the regression model, we not only evaluate the model based on the mathematical
error such as MSE, we also evaluate the model from real life limitation and developed
a logistic regression that is more consistent with the real world.

• For route determination, we decided to replace the existing route with electric bus
rather than make new bus stops and routes. This strategy is more practical in
real life because it is cheaper for the government to operate the plan while it is
convenient for the passenger.

• For route determination, we decided to replace the existing route with electric bus
rather than make new bus stops and routes. This strategy is more practical in
real life because it is cheaper for the government to operate the plan while it is
convenient for the passenger.

7.2 Weaknesses
• Due to the limitation of length and time, we do not consider some factors that

can potentially impact our model on route decision. One example is the tempera-
ture. Temperature has a potential impact on degradation of Lead ion battery. It
can also affect the capacity of the electric battery. However, because temperature
varies every day and weather is difficult to predict, we do not consider the factor of
temperature.

• For the finance model, we are only considering one type of electric bus model,
Therefore it has a constant price. However, as the electric bus technology getting
more advance, there may be new models that is cheaper or more energy efficient.

8 Conclusion
In this paper, we created several models to analyze the conversion of buses to electric

buses. We first analyzed the environmental consequences of converting to e-buses using
regression model, and found that the number of times noise pollution is lower and the
percentage of electric buses have a nonlinear, positive correlation, while the amount of
CO2 emission and percentage of electric buses have a nonlinear, negative correlation.
We then apply the logistic regression model for noise pollution and improved logistic
regression model for CO2 emission to Seattle, and found that Seattle currently has a
CO2 Emission amount of 1.416× 1011, and its noise level is 1.183 compared to that of a
full diesel bus fleet. When 100% of its buses are electric buses, its CO2 emission will be
6.25× 1010, while its noise level will be 3.308 times lower than a full diesel bus fleet.

By examining the economic cost of converting to a full electric fleet using a recursive
model, we found that it will take around 6 years for buses in Seattle to be fully converted
to electric buses, if 50% of the costs are covered by external funds.

Finally, to provide 10 years plan for electric bus update, we employ the Entropy
Weight Method and TOPSIS to determine which route should be transit first in Seattle,
San Francisco, and New York. This is done by taking the number of ridership, route
length, and elevation into consideration. We displayed the top 10 ranking of the bus
route in each city. Then we used the K Mean Clustering Model to decide the location
of charging stations in each city. The result shows that Seattle requires a total of 8
charging station, San Francisco requires 6, and New York requires 31 charging stations.
The coordinates for the first few charging stations in each city are presented in our result
analysis.
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9 Letter

Figure 10: Letter to Transportation Officials
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https://kingcounty.gov/~/media/depts/metro/accountability/reports/2022/system-evaluation
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Appendices
Program Code
public class Recuresive
{

public static int RecModel(double f)
{

int bus;
int bus_pre = 15;
int count = 1;
while(bus_pre < 5927)
{

bus = bus_pre + (int)((0.6*(311893583*2.9 -
(5927- bus_pre)*24525.3*(0.76+1.14)
-15*13610.7*(0.36+0.64) -(bus_pre -15)
*24525.3*(0.36+0.64) -44501*5927))
/((797822+0.25*60000) *(1-f)));

System.out.println ("year "+count+" bus increase
to "+ bus);

bus_pre = bus;
count ++;

}
return count;

}
public static void main(String [] arg)
{

System.out.println ("50% fund");
RecModel (0.5);
System.out.println ("40% fund");
RecModel (0.4);System.out.println ("30% fund");
RecModel (0.3);System.out.println ("20% fund");
RecModel (0.2);System.out.println ("10% fund");
RecModel (0.1);System.out.println ("0% fund");
RecModel (0);

}
}

(a) Seattle Bus
Route Planning

(b) San Francisco
Bus Route Plan-
ning

Figure 11: City Bus Route Planning
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(a) New York Bus Route
Planning 1

(b) New York Bus Route
Planning 2

Figure 12: New York Bus Route Planning

(a) New York Bus Route
Planning 3

(b) New York Bus Route
Planning 4

(c) New York Bus Route
Planning 5

Figure 13: New York Bus Route Planning


	Introduction
	Background
	Problem Restatement

	Assumptions
	Data and Variables
	Problem 1: Ecological Consequences Model
	Noise Pollution Determination
	Logistic Regression Model

	CO2 Emission Determination
	Linear Regression Model (Least Square Regression)
	Improved Logistic Regression Model
	Exponential Regression Model

	CO2 Models Comparison
	Application to Seattle
	Noise Pollution
	CO2 Emission

	Sensitivity Analysis

	Problem 2: Financial Model
	Recursive Function Model
	Parameter Determination
	Result Analysis

	Problem 3: E-Bus Update Plan Model
	Overall Idea
	Route Priority Determination
	Ridership
	Route Length
	Elevation

	Entropy Weight Method
	TOPSIS Model
	Charging Station
	K Mean Clustering Model

	Result Analysis For Route
	Seattle
	San Francisco
	New York

	Result Analysis for Charging Station
	Seattle Charging Station
	San Francisco Charging Station
	New York City Charging Station

	Overall planning of three cities

	Strengths and Weaknesses
	Strengths
	Weaknesses

	Conclusion
	Letter
	Appendices

